The Vole In The Climatic Coal Mine

How One Of The Rarest Mammals In North America Can Be A Key Element In Management And Restoration Of One Of The Largest Remnant Wetlands In The Mojave Desert

> Rob Klinger United States Geological Survey

Janet Foley University of California, Davis Deana Clifford California Department of Fish & Wildlife Alexa Lindauer University of California, Davis John Vogel United States Geological Survey

Where I Am Going

 Put relationships between Amargosa vole population dynamics and habitat in a climatic context

 Describe how and why the vole is a key, but not only element, in conserving a very important and uncommon wet system in the Mojave Desert

Ecological Setting

- Mojave Ecoregion
 - Tecopa is located in the central Mojave

Image courtesy of Randy McKinley USGS-EROS

Ecological Setting The Amargosa River

One of four rivers in the Mojave ecoregion (≈ 300 km in length) One of two with headwaters and mouth entirely within the ecoregion Approximately 30 km (10%) flows aboveground Local recharge from springs, regional recharge from groundwater (Spring Mountains in Nevada)

Ecological Setting Spatial Pattern of Precipitation

Say Hello To The Amargosa Vole

- 75-100 g rodent
- Subspecies of garden variety California vole
- Evolutionary significant unit!
 - Cut off from other subspecies ≈ 10,000 – 250,000 years
 - Multiple lines of origin
- Predisposes itself to extinction
 - EXTREMELY restricted range
 - 1 km² of fragmented *wetlands*
 - Small and variable population size
 - Habitat specialist!
 - Tied to patches of bulrush

Possibly the most endangered mammal in North America (Klinger et al. 2015; Global Ecology & Conservation)

Ecological Setting Bulrush and Voles

- Food (bottom-up process)!
 - Bulrush stands are almost monocultures
 - VERY low quality forage
 - Recruitment and abundance strongly related to bulrush quality
- Predators (top-down process)!
 - Two dozen predators
 - Can be a very strong force
 - Population mortality-limited in some years (predation)

Ecological Setting Strong Seasonality In Habitat Conditions

January

May

Ecological Setting Very Patchy Habitat Conditions

Bulrush Patches

An Overview of What Has Been Done On The Ground Population Dynamics & Habitat

- Lots of trapping
 - January 2012 November 2016
 - N = 6 16 grids
 - Mark-recapture
- Lots of habitat measures
 - Vegetation species & cover
 - Bulrush
 - Cover
 - Stem density
 - Biomass
 - Physical measures
 - Water depth
 - Soil moisture

So What Did We Learn?

January 2012 – November 2013

- Abundance
 - Strong seasonal dynamics
 - ≈ 300-400 during the summer
 - ≈ 70-90 during the winter
 - Great spatial variability
 - ≈ 86% of animals occurred in one grid
- Demography
 - They don't move far (≈ 20 30 m)
 - Decent recruitment (≈ 1.25 per adult)
 - Low monthly survival (\approx 0.33)
 - Predation

An Unnatural Field Experiment

- The "Borehole"
 - In 2012 85% 90% of the vole population occurred in a 2.5 ha wetland at the northern end of the vole's current range
 - \approx 1.50 ha dominated by bulrush
 - ≈ 25-35 voles ha⁻¹
 - Mean bulrush cover ≈ 92%
 - There was standing water throughout most of the grid

Standing Water Depth (cm)

An Unnatural Field Experiment

- The "Borehole"
 - Mean bulrush cover in 2013 ≈
 8%
 - ≈ 0.15 ha dominated by bulrush
 - There was very little standing water in most of the grid
 - ≈ 5-6 voles in November 2013
 - What happened!?
 - A flood control project resulted in the marsh being drained

Standing Water Depth (cm)

June 2013

Habitat Suitability Can Rapidly Change

Borehole June 2012

Borehole June 2013

Clear window into potential drier future conditions and long-term degradation of bulrush stands

Threats

• Intrinsic

- Restricted range, isolation, small population, variable population, habitat specialist, patchy habitat, limited dispersal, low recruitment rates
 - Can't do too much about these
- Extrinsic
 - Predation
 - Can't do too much about this
 - Disease
 - Can do a little bit about this
 - Drying of the wetlands
 - Climate
 - Human activities
 - Can we do something about these?

Water Availability, Bulrush & Voles

Only ≈ 1 km² of wetland vegetation in the Lower Amargosa
 Only ≈ 25 ha of bulrush dominated vegetation
 Long term reduction in condition and/or extent of bulrush dominated vegetation would likely lead to extinction of the vole

Human Activities

- Modern solar arrays can have major impacts on water table
 - Impacts can be detected 100 km or more away
- Local water use
 - Pahrump and Las Vegas (Nevada)
 - Tecopa Hot Springs
- Concern with the vole and the wetlands is synergistic effect of human-driven lowering of the water table and ongoing climate shifts
 - The "ultimate offsite effect"

"The \$2.2 billion bird-scorching solar project" Wall Street Journal February 12, 2014

Relationship Between Bulrush Dynamics & Climate

- Monthly precipitation
 - 1949 present
 - N = 30 stations
- Bulrush condition (production/productivity)
 - Time series of satellite data
 - Normalized Difference
 Vegetation Index (NDVI)

A Word On NDVI Monthly & Derived Data

- Monthly data as covariate in population analyses
- Derived annual production and temporal NDVI indices from MARSS (state-space) models for bulrush production analyses
 - Production
 - Base level
 - Amplitude
 - Annual maximum
 - Rate of increase
 - Total annual production ("large integral")
 - Temporal
 - Start & end of season
 - Duration

Relationship Between Bulrush Dynamics & Climate

- Model relationships between precipitation, bulrush performance (cover, stem density, and biomass), NDVI and vole abundance
 - Predict bulrush biomass from NDVI
 - Link bulrush NDVI relationship to large-scale forecasts of vole population dynamics

Relationship Between Climate and Bulrush Dynamics

NDVI and Precipitation

- Precipitation consistently improves model predictions for several production variables:
 - Amplitude, total production, and rate of production
 - ∆AICc ≥ 26
- General increase in bulrush production from 1985 to 2008 followed by decrease
 - Self-thinning

Total Annual Production & Precipitation

Relationship between climate and wetland vegetation dynamics

Strong signature of recent drought (2012 – 2015)

Relationship Between Vole Population Dynamics and Bulrush Production

 Strong temporal relationship between abundance and bulrush production

Simulating Changes To Bulrush Production & Modeling Vole Population Persistence

4- step process

- Estimate bulrush biomass from cover-stem density-stem weight relationships
- 2. Relate bulrush biomass to NDVI
- 3. Relate NDVI to precipitation patterns (current and future)
- 4. Relate vole carrying capacity(K) to NDVI

Predicted Changes In Bulrush Production

- Greater spatial and temporal variability in NDVI (= bulrush biomass)
- Loss of ≈ 5 ha of bulrush

Decrease in NDVI to levels ≈ to current mid-spring levels

Population Modeling

Null Model

Seasonal Fluctuations

Trend In K = 0

Ν

٠

Is It Useful To Think Of The Vole As A Canary?

Ecologically, probably not

 The wetlands will probably alert us to the likely trajectory of the vole-before the vole warns us of the likely trajectory of the wetlands

But for management the vole is a very useful bird

Measurable Conservation Actions

What Is Working

- Tremendously successful collaboration
 - Three federal agencies, two universities, one state agency, two NGO's
 - High profile success story (so far)
- Highly integrated science driven management
 - Population and habitat monitoring
 - Field and mesocosm experiments
 - Restoration
 - Captive breeding
 - Translocations
- Moving from deterministic vole-ocentric management perspective to wetland protection based on stochastic dynamics

What Could Be Improved

- Socio-economic perceptions
 - Extremely low human population density
 - Tiny local economy
- Long-term planning
 - Likely a conservation-dependent species
- Water management strategy
 - How to provide water to wetlands in a system with high variability and high uncertainty

Many thanks!

- Brian Croft, Judy Hohman, Tara Callaway & Scott Hoffman - USFWS
- Russ Scofield, Chris Otahal BLM
- Scott Osborn, Steve Parmenter, Austin Roy, Steve Torres - CDFW
- Ashley Beechan, Anna Godinho, Michael Cleaver, Steven Anderson, Paul Maeir, Jon Clark, Steven Lee – USGS Western Ecological Research Center
- Randy McKinley USGS
- Jerry Tagestad and Janelle Downs Pacific Northwest National Laboratory

- Risa Pesapane, Caitlin Ott-Conn, Amanda Poulsen, Arielle Crews, Stephanie Castle, Nora Allan, Patrick Foley – UC Davis
- Chris Conroy, Bree Rosenblum, Alex Krohn UC Berkeley
- Susan Sorrells, Judy Palmer, Len Warren, Tanya Henderson, Patrick Donnelly – Shoshone
 Village and Amargosa Village
- Otto Alvarez and Qinghua Guo UC Merced
- Emma Underwood UC Davis

Funders

- Bureau of Land Management (BLM)
- California Department of Fish & Wildlife (CDFW)
- UC Davis School of Veterinary Medicine (UCDVM)
- US Fish & Widlife Service (USFWS)