Coastal fog water relations at the watershed level

Michaella Chung, UC Berkeley 2017 Riparian Summit October 18, 2017

Dralle et al. 2015, WRR

In seasonally-dry climates, such as Northern California, fog water is often the only source of dryseason water input.

1 – Climatically

2 – Through direct water inputs

decreased transpirational loss and water stress

1 – Climatically

- 2 Through direct water inputs
- 3 Through foliar uptake

Case study: Upper Pilarcitos Creek Watershed, CA

Objectives:

- to observe heterogeneities in fog events and deposition
- to identify the spatiotemporal controls of fog heterogeneity
- to (create a new method to) estimate the watershed-level effects of fog when:
 - local observations are upscaled
 - these controls are considered

Case study: Upper Pilarcitos Creek Watershed, CA

Google Maps, 2017

Clear

- low RH (~70%)
- higher air temp (~17°C)
 1°C difference in temperature and 1% difference in VWC at 75mm and 300mm soil depth

- max RH (~99%)
- cooler air temp (~11°C)
- smaller difference in temperature and in VWC at 75mm and 300mm soil depth

Observed heterogeneities

Observed heterogeneities: Distance to canopy edge

13

Observed heterogeneities: Distance to canopy edge

Observed heterogeneities: Topography

15

Observed heterogeneities: Vegetation canopy

The dominant **spatiotemporal controls of heterogeneity** in fog occurrence and flux in the Upper Pilarcitos Creek Watershed are:

- topography
- vegetation
- interannual variability

The dominant **spatiotemporal controls of heterogeneity** in fog occurrence and flux in the Upper Pilarcitos Creek Watershed are:

- topography
- vegetation
- interannual variability

We need to consider:

- fog extent observations
- spatial changes in elevation and vegetation cover within areas of fog occurrence

New upscaling method for fog water input estimate

At the watershed level: Direct fog water inputs

_	Average fog water flux
2014	6.7 mm
2015	2.6
2016	2.9

At the watershed level: Direct fog water inputs

_	Average fog water flux
2014	6.7 mm
2015	2.6
2016	2.9

+10-30 mm/season of fog-derived precipitation 1-3% of total annual water input

At the watershed level: Direct fog water inputs

At the watershed level: ET suppression

	Reductions per day
Open water evaporation	9.5%
Forest PET	41
Chaparral PET	17

At the watershed level: ET suppression

	Reductions per day	
Open water evaporation	9.5%	
Forest PET	41	
Chaparral PET	17	-

+125 mm/season of decreased transpiration demand

At the watershed level

-570 mm	dry season water deficit
+10-30 mm	direct fog water input
+125 mm	avoided transpiration loss

At the watershed level

-430 mm	dry season water deficit
+10-30 mm +125 mm	fog-derived precipitation avoided ET loss
-570 mm	dry season water deficit

-25%

Conclusions

- Fog is critical in regions where high ecosystem demand for water coincides with the dry season
- Fog interacts with the water balance directly via fog water flux and climatically through reduced ET suppression
- Quantifying fog's hydrologic role during the dry season requires identifying the dominant controls on spatiotemporal heterogeneity of fog events
- In this watershed, avoided transpiration provides a more significant relief of summer watershed water deficit than fog water flux

Q&A

Thank you!

29

Instrumentation

Throughfall collector

Radial collector

Instrumentation

Soil moisture sensor

Leaf wetness sensor

Weather station