Building the scientific foundation for a mountain meadow carbon protocol in California

Amy Merrill¹, Ben Sullivan², Steve Hart³, Cody Reed², Mark Drew⁴ ¹Stillwater Sciences , ²University of Nevada Reno, ³University of California Merced, ⁴CalTrout

CalTrout Stillwater Sciences UC Merced UNR Reno Plumas Corp

Sierra Foothill Conservancy Truckee River Watershed Council South Yuba River Citizen's League American Rivers US Forest Service

Talk Outline

- Background
- Main question
- Project structure
- Results on baseline conditions
- Implications and Next Steps
- Working together to SCALE UP

What is a meadow?

Dominated by herbaceous plant communities (woody species can occur but not dominate) Rooting zone saturated for at least 2-3 weeks of growing season Water sources can include surface water flooding,

groundwater, subsurface flows, and snowmelt

Weixelman et al. 2011

What is a Carbon Protocol?

Purpose: To create carbon offsets of known amounts and duration (uncertainty is quantified and 'contained')

For a particular type of C sequestration or output reduction:

- Rules of the game by which carbon offset projects are developed
- Project Entry Requirements
- How they estimate C sequestered
- How they assure accuracy, completeness and credibility

What are they good for?

Recognize real value in nature's carbon storage.

Voluntary Market: Buyers, such as companies, public entities or individuals value and can pay that value to offset global warming impacts.

Regulatory Market: Required through regulations such as AB32. Offsets need to cost less than C reduction. AB32 allows up to 8% of required reductions to be met through offsets.

Why a <u>Meadow</u> C Protocol?

SOIL CARBON POOLS IN WETLANDS ARE LARGE

EH= Estuarine emergent EW = Estuarine woody and lacustrine emergent

PRL-SS = Palustrine etc. with shrubs PRL-FO = Palustrine, etc. with forest PRL-EM = Palustrine, riverine PRL-f = Palustrine, etc. farmed PRL-UBAB = Plaustrine etc. with unconsolidated bottom

Meadows in the Sierra Nevada and S. Cascade

Total Number: >17,000 meadows

Total Acreage: ~200,000 acres

(Veirs et al. 2013)

Protocol for restoration through raising the groundwater level during the growing season.

Red Clover Creek @ X-s #19, 6/2008

Many things change with meadow restoration degradation

Healthy Meadow

Diverse Mosaic of Habitats

Surface flow

Innundation during floods; allow sediment deposion; Attenuated flood flows

Meadow & Riparian vegetation

Groundwater red

Overarching Question: Does hydrologic restoration of meadows result in a net increase in carbon sequestration?

Carbon and GHG Flows

Oxidation Microbes & Soil

ReductionPlants, **Microbes & Soil**

Hypotheses

Compared to degraded conditions, hydrologic restoration results in:

1. Increase in net CO₂ input to soil via plant production.

2. Decrease in net CO_2 oxidation from soil via aerobic decomposition.

3. The net increase in N₂O and CH4 fluxes to atmosphere is small in comparison to the increase in CO₂ input.

Before - After Control -Impact (BACI) Design

7 Impact (restoration) 6 Control <u>2 Reference</u> 15 Total

Primary response variables

- CO_2 , N_2O , CH_4 flux
- Primary production inputs

Net change in carbon storage

Hypothesized Co-variates

- Soil /Air temperature
- Soil water content
- Vegetation biomass
- Vegetation wetland status
- Groundwater level

Sampling Design 24 point grid: 30 m between points

Measurements per Grid Point

- Soil CO2, N2O, CH4 flux
- Monthly to bimonthly
- Aboveground biomass

- Litter Carbon
- Belowground biomass roots
- Soil C (to 1 m)

How do we measure gas flux?

In Situ Incubation in Static Chambers with 3 time points

We have had an army of people!!

RESULTS

all verting

Soil Carbon Pools

Soil Stock tonnes C ha-1 by depth (cm) Middle Martis Martis Contro Upper Loney Partnership East Creek Greenville MAP Goodrich Bonita Loney Smith Bean Deer eso 75 in (50)(100)(150)(200)(250)23 in (300)■ 0-15 ■ 15-30 ■ 30-45 ■ 45-60 ■ 60-75 ■ >75 (350)(400)

NOTE: Deer, Upper Loney and Middle Martis have no >75 cm measurements, Truckee and Truckee Control are 'under construction'.

Soil Carbon Pools

Soil Stock tonnes C ha-1 by depth (cm)

NOTE: Deer, Upper Loney and Middle Martis have no >75 cm measurements, Truckee and Truckee Control are 'under construction'.

CARBON INPUTS TO SOIL

Senescent vegetation input to soil 2015

Net GHG flux *Loss to atmosphere from meadow *Dominated by CO2

kg CO2e ha-1

Net GHG flux Different among Meadow Sets

CO2 LOSS from SOIL

CO2 Flux from Soil

CO2 LOSS: ALL MEADOWS BY MONTH

Just Bean and Smith Meadows

ADD PHOTO

Just Martis and Martis Control Meadows

How well is it predicted here?

Soil water content and air temperature, used in a multivariate model are significantly and both positively correlated to CO₂ flux from soil.

Meadows	All Year		Spring/Sur	nmer	Fall/Winter		
	R2	n	R2	n	R2	n	
ALL	0.28	3600	0.25	2180	0.10	1420	
Plumas	0.47	982	0.47	756	0.31	226	
Truckee	0.30	667	0.21	378	0.09	289	
Loney	0.38	669	0.25	304	0.25	223	
Bean/Smith	0.25	755	0.38	359	0.21	369	
Osa Complex	0.38	669	0.13	383	0.16	286	

N2O and CH4, Seasonal Patterns

CH4 Flux, All Meadows, nmols CH4 m-2 s-1

METHANE: MARTIS AND MARTIS CONTROL

METHANE: OSA COMPLEX

METHANE: LONEY AND DEER

METHANE: UPPER LONEY, LONEY AND DEER

METHANE: BEAN AND SMITH

BREATHER

DEER

NITROUS OXIDE: MARTIS AND MARTIS CONTROL

NITROUS OXIDE: OSA COMPLEX

NITROUS OXIDE: LONEY COMPLEX

NITROUS OXIDE: BEAN AND SMITH

Nitrous Oxide Flux

BREATHER

A.K

Net GHG flux *Loss to atmosphere from meadow *Dominated by CO2

SUMMARY

MEADOW	GV	GR	EC	L	D	UL	MM	MC	Ве	S	0	Р	Во
C Component	g C m-2 y-1												
Soil and Root Pool	10,356.2	14,426.8	10,114.2	15,246.3	25,667.9	38,837.1	21,601.9	18,627.7	11,788.3	27,886.3	18,840.5	16,797.6	17,964.8
Litter INPUT	38.1	35.0	43.6	308.9	469.1	625.1	232.2	234.2	87.3	111.4	49.1	79.9	346.0
CO2 and CH4 FLUX	(968.5)	(1,002.1)	(856.0)	(893.9)	(1,085.4)	(978.7)	(685.2)	(742.7)	(634.7)	(1,064.1)	(532.0)	(553.5)	(682.4)
NET g C m-2 y-1	(930.4)	(967.1)	(812.3)	(585.0)	(616.4)	(353.6)	(453.0)	(508.5)	(547.4)	(952.6)	(483.0)	(473.6)	(336.4)
Percent of Storage	(9.0)	(6.7)	(8.0)	(3.8)	(2.4)	(0.9)	(2.1)	(2.7)	(4.6)	(3.4)	(2.6)	(2.8)	(1.9)
Years to Depletion	(11.1)	(14.9)	(12.5)	(26.1)	(41.6)	(109.8)	(47.7)	(36.6)	(21.5)	(29.3)	(39.0)	(35.5)	(53.4)

We are losing our soil resource

Summary

- Soil Carbon is the largest C pool -most upper 60 cm
- Oxidation of soil organic material to CO₂- is dominant process
- N2O and CH4 "uptake" during much of year
- Greatest GHG activity in spring and summer
- VWC and Temperature are part of the predictive model
- Above ground biomass input less than CO2+CH4 loss.
- Many degraded meadows are rapidly losing their soil organic material.
- So far, the wetter, less degraded are not.

Summary

Scaling Up It Takes:

- Someone(s) with a Vision
- A lot of people
- A lot of cooperation
- Multiple skill sets and resources
- Good and fearless leadership

Thanks and Acknowledgements

CalTrout University of Nevada at Reno **UC Merced Plumas Corporation Truckee River Watershed** Council American Rivers Sierra Foothill Conservancy **SYRCL US Forest Service NFWF CDFW**

