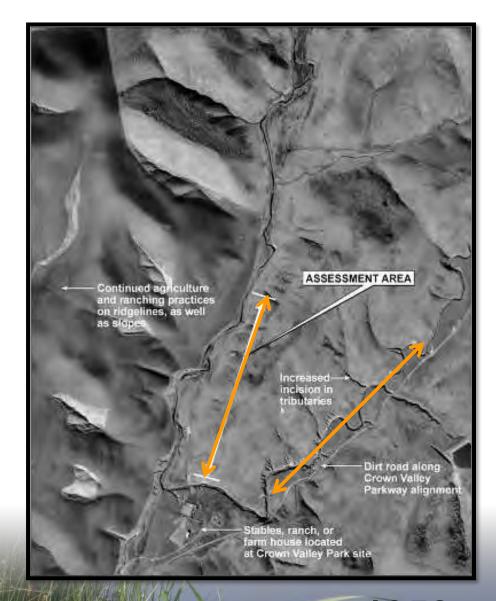
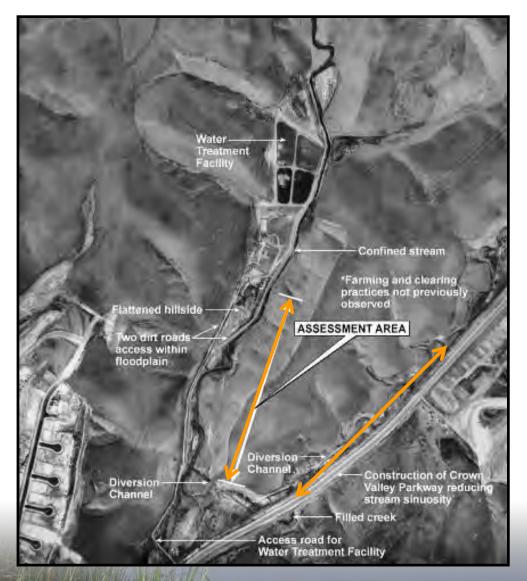
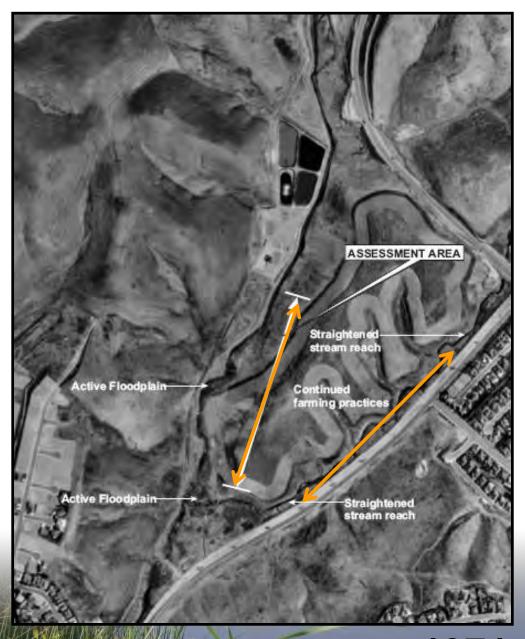
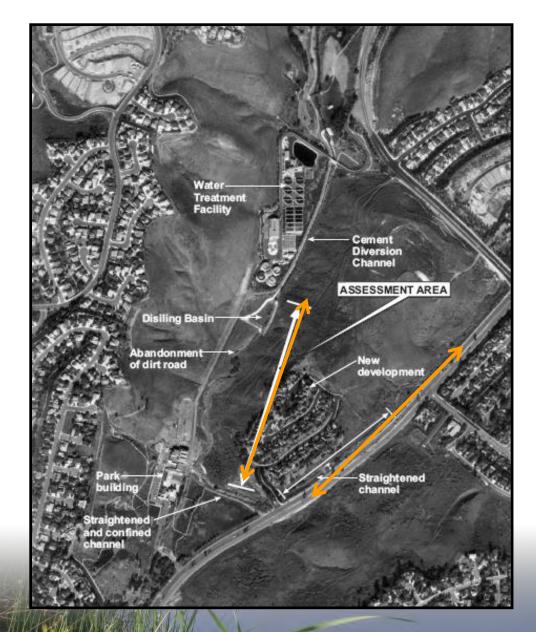
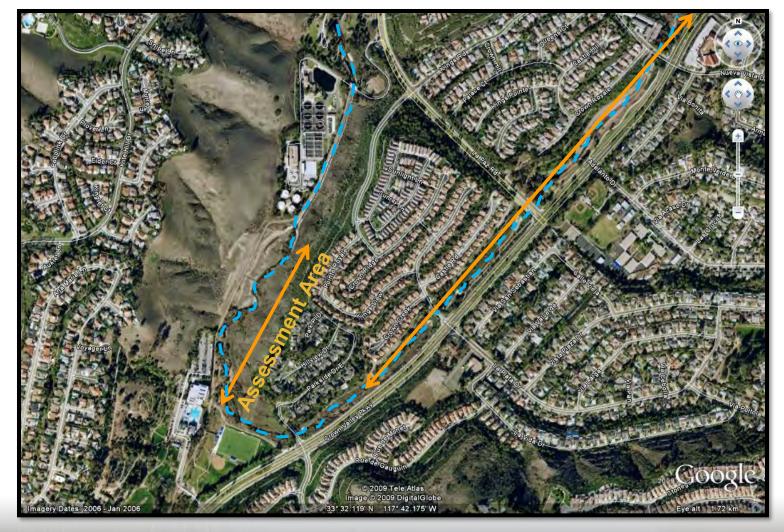

Use of Hydrogeomorphic Assessment Method (HGM) and the California Rapid Assessment Method (CRAM) in Guiding Adaptive Management Decisions: The Story of the City of Laguna Niguel and the Journey to Revitalizing a Southern California Urban Creek (Sulphur Creek)


Lindsay Teunis
ICF San Diego
Iindsay.teunis@icf.com


Aliso Creek Watershed and Sulphur Creek




What is an "Urban Stream"?



and NOW...

2006

Aliso Creek Watershed and Sulphur Creek

- July 1999, USACE Aliso Creek Watershed Management Feasibility Study.
- Study sponsored by the USACE, County of Orange, and municipalities and water districts
- Goal: (1) Re-establish stable, healthy, and sustainable watershed. (2) Identify feasible management options
- Study found that 12.2 of the total 14.2 Sulphur Creek miles (86 percent) are highly degraded
- 10.5 miles (74 percent) provide no measurable functional output
- None of the remaining stream reaches function at a high level.

Specific Goals for Restoration Identified

Enhancing **hydrologic processes** including:

- Water storage, stream stability, and energy dissipation under existing constraints;

Restoring biogeochemical functions including:

 Nutrient cycling, nutrient availability, and sediment deposition; and

Restoring **biologic functions** including:

- Native wetland and riparian vegetation, plant and animal movement and dispersal, biomass production, and native plant and animal diversity.

Need to Evaluate Aspects of Project Throughout Lifecycle

Use Various Tools in the Restoration Planning Toolbox EPA Three-tiered Monitoring Framework

Level 1 (Resource Inventories and Maps)

- National Wetland Inventory (NWI)
- Vegetation Mapping

Level 2 (Rapid Assessment of Overall Site Conditions)

- California Rapid Assessment Method (CRAM)
- Hydrogeomorphic Methodology (HGM)

Level 3 (Intensive Data Collection/Quantitative Assessment)

- Rare Plant Survey
- Wildlife Surveys (i.e., point counts, transects, grid)
- Index of Biotic Integrity (IBI) (algae, fish, invertebrate)
- Vegetation Monitoring (i.e., point/line intercept, quadrats)

Need to Evaluate Aspects of Project Throughout Lifecycle

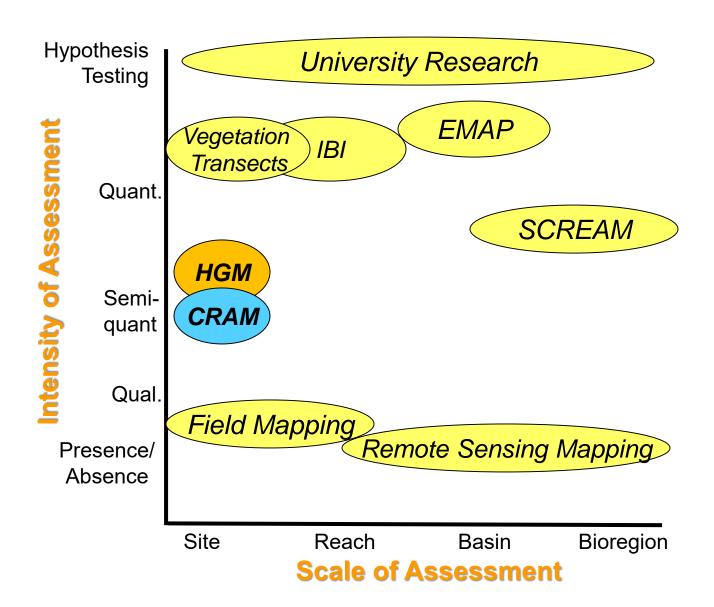
Use Various Tools in the Restoration Planning Toolbox EPA Three-tiered Monitoring Framework

Level 1 (Resource Inventories and Maps)

- National Wetland Inventory (NWI)
- Vegetation Mapping

Level 2 (Rapid Assessment of Overall Site Conditions)

- California Rapid Assessment Method (CRAM)


Focus on use of these tools in the Project

Lifecycle

Hydrogeomorphic Methodology (HGM)

Level 3 (Intensive Data Collection/Quantitative Assessment)

- Rare Plant Survey
- Wildlife Surveys (i.e., point counts, transects, grid)
- Index of Biotic Integrity (IBI) (algae, fish, invertebrate)
- Vegetation Monitoring (i.e., point/line intercept, quadrats)

HGM Overview

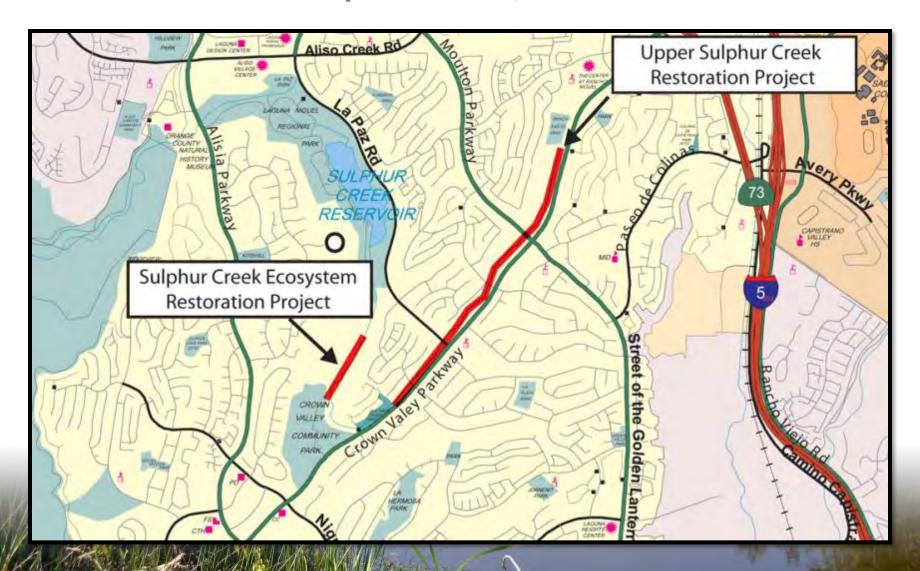
- To assess the capacity of a stream reach to perform functions relative to similar streams in a region
- A method for assessing the functional capacity of an ecosystem
- Functional capacity is the degree or magnitude to which a ecosystem performs a function
- Ecosystem functions assessed through measures of commonly identified structural components
- HGM variables scored, used in simple algorithms to calculate riverine Functional Capacity Indices (FCIs), multiple by acreage to get Functional Capacity Units (FCU)
- Three HGM Indices Divided into 3 Distinct Functions
 1.) Hydrologic 2.) Biogeochemical 3.) Biologic

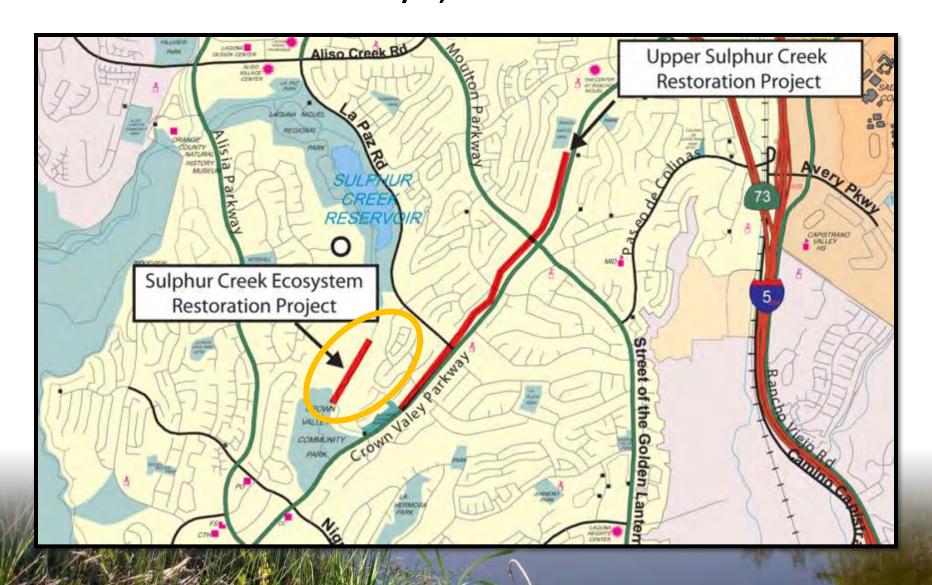
CRAM Overview

CRAM is a field-based "walk and talk" diagnostic tool that, when used as directed, provides rapid, repeatable, numeric assessment of the *overall condition* of a wetland based on visible indicators of its form, structure, and setting, relative to the least impacted reference condition.

What is overall condition?

Overall condition is the capacity or potential of a wetland to provide the functions and services expected for the same type of wetland in its natural setting, assessed relative to "best" reference condition.


CRAM Design: Attributes


- CRAM recognizes 4 attributes of wetland condition
- Each attribute is represented by 2-3 metrics, some of which have submetrics

Attributes	.	Metrics and Submetrics				
		Aquatic Area Abundance Buffer Submetrics:				
Buffer and La Context	andscape	Percentage of Assessment Area with Buffer				
Context		 Buffer Average Buffer Width 				
		Buffer Condition Water Source				
Hydrology		Hydroperiod				
		Hydrologic Connectivity				
	Physical	Structural Patch Richness				
	rryordar	Topographic Complexity				
		Plant Community Composition Submetrics:				
01 1		Number of Plant Layers				
Structure	Biotic	Number of Codominant Species				
	DIOLIC	Percentage Invasion				
MAIT		Horizontal Interspersion and Zonation				
A VIII	WAR DANN	Vertical Biotic Structure				

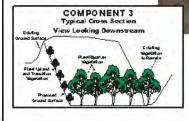
Restoration was divided into two projects spanning over 2 miles of Sulphur Creek, an urbanized stream.

Sulphur Creek Ecosystem Restoration Project 7.7 acres/ 2,000 linear feet

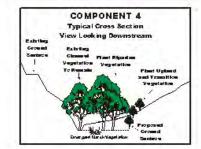
Component	Description	Total Area Acres	Riparian Area Acres
1 2 3			
Site wide	Remove exotic vegetation and replace with native vegetation	6.19	2.61
2 3	Management Measure 2 (Inner Floodplain)		
MM2-A	Excavate and replant the detention basin with native vegetation	0.39	0.39
MM2-B	Remove upstream bank protection for the detention basin and excavate and plant west overbank upstream of the basin	0.34	0.34
MM2-C	Excavate and plant the low area on the east overbank	1.48	1.48
MM2-D	Excavate and plant west overbank area	0.38	0.38
MM2-E	Remove exotic grasses in the area upstream of the footbridge and plant with native riparian vegetation	0.47	0.47
MM2-F	Remove the existing dip crossing at the confluence of Sulphur Creek and the Crown Valley Park tributary and replace with a bridge	0.16	0.16
3	Management Measure 3 (Outer Floodplain)		
MM3-A	Excavate the overbank area west of the detention basin and plant with native vegetation	0.38	0.38
ММ3-В	Excavate the west overbank area upstream of the detention basin between the stream channel and access road and plant with native vegetation	1.48	1.48

Alternative Components

SULPHURC REEKE CO SYSTE IIR ESTO RATIONPROJECT 7. Recomme ided Plan



Supaur Creek Econystem Restoration Figure 7-1 Recommended Plan



COMPONENT 1

Typical Cross Section

View Looking Downstream

COMPONENT 2
Typical Cross Section
View Looking Downstream

COMPONENTS 5
Typical Cross Section
View Looking Downstream

Ending
Ground Surface

Plant
Upland and
Transition
Vinguistion
Vin

		Future No	Future	With Pro	ject
HGM FUNCTIONAL CAPACITY INDICES	Baseline	Project	Alt 1	Alt 2	Alt 3
	2002		2014		
Hydrologic Functions (Average)	0.40	0.24	0.20	0.65	0.71
Maintenance of Characteristic Channel Dynamics	0.38	0.24	0.23	0.59	0.61
Dynamic Surface Water Storage and Energy Dissipation	0.35	0.24	0.24	0.78	0.79
Long-term Surface Water Storage	0.47	0.22	0.09	0.73	0.81
Dynamic Subsurface Water Storage	0.42	0.28	0.23	0.50	0.63
Biogeochemical Functions (Average)	0.32	0.25	0.27	0.71	0.78
Nutrient Cycling	0.24	0.24	0.32	0.69	0.81
Detention of Imported Elements and Compounds	0.32	0.24	0.26	0.74	0.82
Detention of Particulates	0.33	0.24	0.24	0.71	0.71
Organic Carbon Export	0.38	0.28	0.25	0.68	0.77
Habitat Functions (Average)	0.53	0.49	0.49	0.89	0.90
Maintain Characteristic Plant Community	0.43	0.43	0.55	0.90	0.90
Maintain Characteristic Detrital Biomass	0.40	0.40	0.40	0.75	0.75
Maintain Spatial Structure of Habitat	0.38	0.36	0.38	0.84	0.84
Maintain Habitat Interspersion and Connectivity	0.49	0.24	0.12	0.84	0.90
Maintain Characteristic Invertebrate Diversity	0.75	0.75	0.75	1.00	1.00
Maintain Characteristic Vertebrate Diversity	0.75	0.75	0.75	1.00	1.00

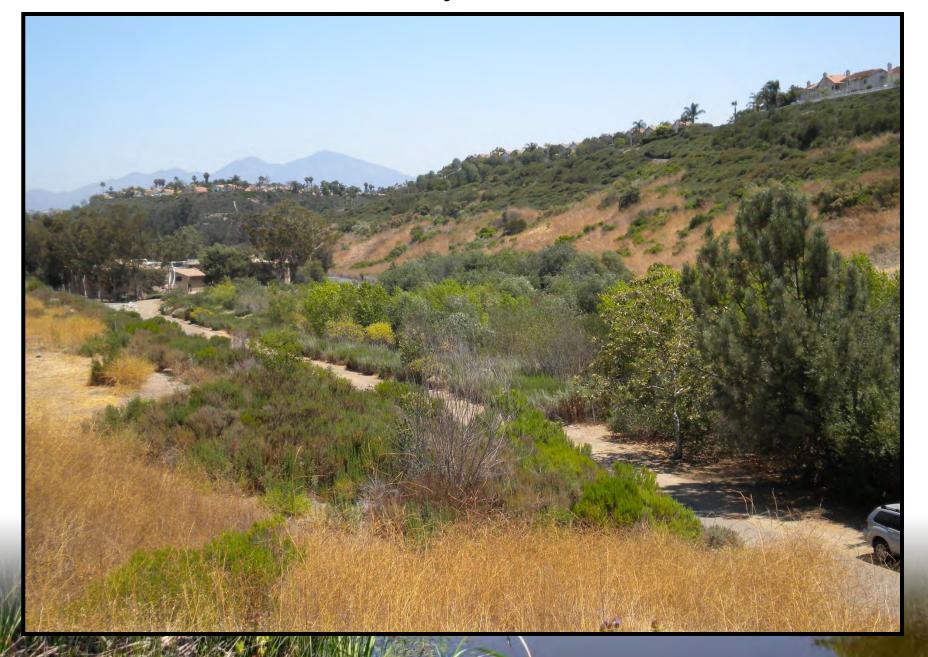
		Future No	Future With Project			
HGM FUNCTIONAL CAPACITY INDICES	Baseline	Project	Alt 1	Alt 2	Alt 3	
	2002		2014			
Hydrologic Functions (Average)	0.40	0.24	0.20	0.65	0.71	
Maintenance of Characteristic Channel Dynamics	0.38	0.24	0.23	0.59	0.61	
Dynamic Surface Water Storage and Energy Dissipation	0.35	0.24	0.24	0.78	0.79	
Long-term Surface Water Storage	0.47	0.22	0.09	0.73	0.81	
Dynamic Subsurface Water Storage	0.42	Û.28	0.23	U.5Û	0.63	
Biogeochemical Functions (Average)	0.32	0.25	0.27	0.71	0.78	
Nutrient Cycling	0.24	0.24	0.32	0.69	0.81	
Detention of Imported Elements and Compounds	0.32	0.24	0.26	0.74	0.82	
Detention of Particulates	0.33	0.24	0.24	0.71	0.71	
Organic Carbon Export	0.38	Û.Zŏ	0.25	<u></u>	0.77	
Habitat Functions (Average)	0.53	0.49	0.49	0.89	0.90	
Maintain Characteristic Plant Community	0.43	0.43	0.55	0.90	0.90	
Maintain Characteristic Detrital Biomass	0.40	0.40	0.40	0.75	0.75	
Maintain Spatial Structure of Habitat	0.38	0.36	0.38	0.84	0.84	
Maintain Habitat Interspersion and Connectivity	0.49	0.24	0.12	0.84	0.90	
Maintain Characteristic Invertebrate Diversity	0.75	0.75	0.75	1.00	1.00	
Maintain Characteristic Vertebrate Diversity	0.75	0.75	0.75	1.00	1.00	

		Future No	Future	With Pro	oject	
HGM FUNCTIONAL CAPACITY INDICES	Baseline	Project	Alt 1	Alt 2	Alt 3	
	2002		2014	2014		
Hydrologic Functions (Average)	0.40	0.24	0.20	0.65	0.71	
Maintenance of Characteristic Channel Dynamics	0.38	0.24	0.23	0.59	0.0 ı	
Dynamic Surface Water Storage and Energy Dissipation	0.35	0.24	0.24	0.78	0.79	
Long-term Surface Water Storage	0.47	0.22	0.09	0.73	0.81	
Dynamic Subsurface Water Storage	0.42	1	0.23	Uni	0.63	
Biogeochemical Functions (Average)	0.32	0.25	0.27	0.71	0.78	
Nutrient Cycling	0.24	0.24	0.32	0.69	û.o I	
Detention of Imported Elements and Compounds	0.32	0.24	0.26	0.74	0.82	
Detention of Particulates	0.33	0.24	0.24	0.71	0.71	
Organic Carbon Export	0.38). <u></u>	0.26	Uhu	0.77	
Habitat Functions (Average)	0.53	0.49	0.49	0.89	0.90	
Maintain Characteristic Plant Community	0.43	0.43	0.55	0.90	û. 9 0	
Maintain Characteristic Detrital Biomass	0.40	0.40	0.40	0.75	0.75	
Maintain Spatial Structure of Habitat	0.38	0.36	0.38	0.84	0.84	
Maintain Habitat Interspersion and Connectivity	0.49	0.24	0.12	0.84	0.90	
Maintain Characteristic Invertebrate Diversity	0.75	0.75	0.75	1.00	1.00	
Maintain Characteristic Vertebrate Diversity	0.75	0.75	0.75	1.00	1.00	

So How Did They Choose the Preferred Alternative???

- USACE needs to determine "Best Buy"
- Looked at cost for each alternative
- Looked at Functional Capacity Units (FCU)

FCU = Average FCI x Acreage


So How Did They Choose the Preferred Alternative???

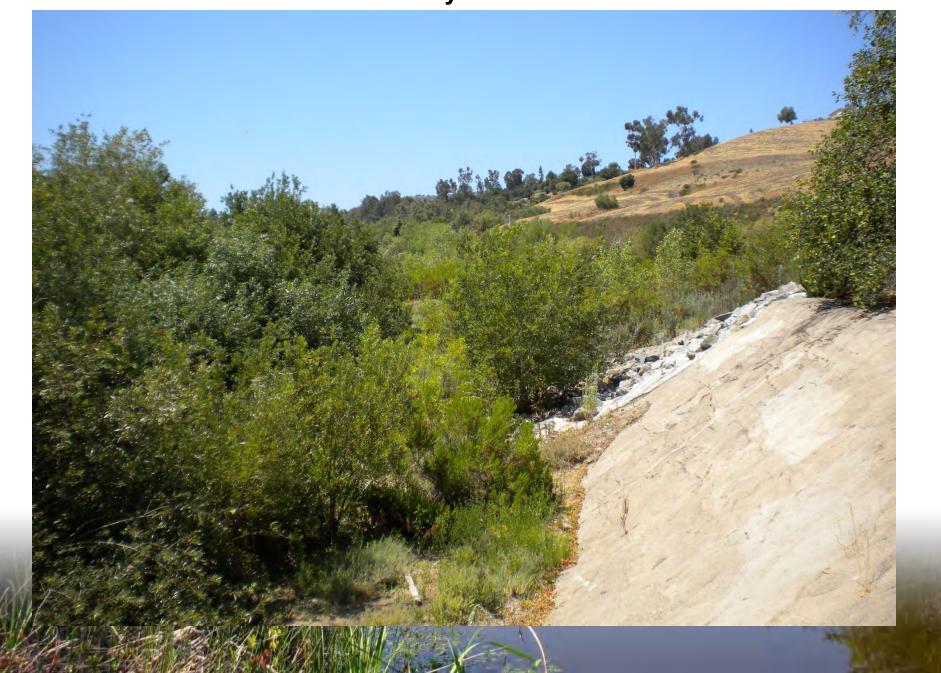
Alternative #		Management Measures		Annualized Output (Total FCUs)	Annualized Cost	FCU Incremental Output	Incremental Cost	Incremental Cost Per FCU	Determination
No Action	0	0	0	4.08	NOT APPLICABLE				
1	1	0	0	4.57	\$84,539 0.49 \$84,539 \$172,528 EI		Eliminate		
2	1	2	0	13.18	\$129,806 9.10 \$129,806 \$14,264 Elii		Eliminate		
3	1	2	3	18.29	\$169,123	14.21	\$169,123	\$11,902	Best Buy

February 2006

July 2010

October 2017

September 2005



September 2005

July 2010

October 2017

September 2005

May 2008

July 2008

July 2010

CRAM Scores

Attribute		Metric	Baseline 2008	Year 1 2009	Year 2 2010	Year 3 2011	Year 4 2012	Max Score
	Aquatic Area		D	D**	D	D	D	D
	Buffer Subm							
Buffer and Landscape	 Percent of Buffer 	Assessment Area with	Α	A**	Α	Α	Α	Α
Context	 Average B 	uffer Width	С	C**	С	С	С	<u> </u>
	 Buffer Con 	dition	С	(C)	С	С	С	(B)
		Attribute Score	38%	42%	42%	42%	42%	49%
	Water Source		С	C**	С	С		
Hydrology	Channel Sta	,	В	В	В	В	C	Α
Trydrology	Hydrologic C	•	Α	A**	Α	Α	A	A
		Attribute Score	75%	75%	75%	75%	67%	83%
	Physical	Structural Patch Richness	D	С	С	С	С	В
		Topographic Complexity	С	В	(c)	С	С	В
		Attribute Score	50%	62%	50%	50%	50%	75%
	Biotic	Plant Community Submetrics:						
Otherstone		Number of Plant Layers Present	С	A **	Α	Α	В	В
Structure		Number of Codominant Species	D	В	В	В	C	В
		Percent Invasion	Α	A**	Α	Α	Α	A
		Horizontal Interspersion	С	В	В	В	C	В
		Vertical Biotic Structure	D	В	В	В	В	В
	Attribute Score				81%	81%	67%	78%
	FINAL S	CORE	51%	68%	65%	65%	56%	73%

HGM Scores

	Pre-Con	Baseline	Year 1	Year 2	Year 3	Year 4	Max			
Functional Capacity Index	2002	2008	2009	2010	2011	2012	Score			
Hydrologic Functions										
Maintenance of Characteristic Channel Dynamics	0.38	0.43	0.48	0.53	0.65	0.67	0.64			
Dynamic Surface Water Storage and Energy Dissipation	0.35	0.39	0.48	0.60	0.68	0.75	0.88			
Long-term Surface Water Storage	0.47	0.56	0.56	0.75	0.75	0.75	0.75			
Dynamic Subsurface Water Storage	0.42	0.37	0.37	0.50	0.50	0.50	0.50			
Bio	geochemic	al Function	s							
Nutrient Cycling/Transformation of Compounds	0.24	0.28	0.45	0.58	0.70	0.75	0.92			
Detention of Imported Elements and Compounds	0.32	0.40	0.47	0.60	0.67	0.71	0.81			
Detention of Particulates	0.33	0.37	0.44	0.55	0.66	0.71	0.79			
Organic Carbon Export	0.38	0.39	0.45	0.52	0.60	0.65	0.72			
	Habitat F	unctions								
Maintain Characteristic Plant Community	0.43	0.42	0.62	0.75	0.82	0.85	0.95			
Maintain Characteristic Detrital Biomass	0.40	0.42	0.42	0.39	0.63	0.83	0.88			
Maintain Spatial Structure of Habitat	0.38	0.42	0.48	0.62	0.75	0.84	0.92			
Maintain Habitat Interspersion and Connectivity	0.49	0.55	0.60	0.80	0.80	0.80	0.80			
Maintain Characteristic Invertebrate Diversity	0.75	0.75	0.75	0.75	1.00	1.00	1.00			
Maintain Characteristic Vertebrate Diversity	0.75	0.75	1.00	1.00	1.00	1.00	1.00			

Thank you!!

RESTORING WETLANDS

One action, many benefits

UPPER SULPHUR CREEK RESTORATION PROJECT

Urbanization profoundly changed the natural hydrologic patterns and vegetation along Upper Sulphur Creek. Through stream reconstruction and restoration, some of the creek's natural features and ecological functions can be recovered.

BEFORE URBANIZATION

- Creek environment: Natural canyon valley with native scrub vegetation
- Upper Creek length: 2.5 miles along a continuous gentle gradient
- Creek flow: Increased slowly during rainstorms, spread across a wide floodplain; then decreased slowly from the peak rate
- Dry weather flows: Slow seepage flow after winter rains, usually tapering to nothing by summer, supported woodland and scrub vegetation

AFTER URBANIZATION

- Creek environment: Intensely urbanized, reshaped, and paved, with irrigated ornamental landscaping
- Creek length: Shortened to 1.5 miles, with sudden elevation drops between more gently-sloped stretches
- Creek flow: During rainstorms, the neighborhoods' efficient storm drain system causes rapid increases to a heightened peak volume at high velocity in a narrow channel; flow rate drops quickly to pre-storm level afterwards
- **Dry weather flows:** Continuous low flow all year due mostly to landscape sprinkler runoff from surrounding neighborhoods; where not confined to a concrete ditch, flow supports marsh plants and invasive non-native species

BEFORE THE RESTORATION PROJECT

- Low flows: Confined to a 4' wide concrete ditch within a wider grassy storm channel
- Vegetation: Surrounding turfgrass and non-native trees require frequent watering, fertilizing and trimming

AFTER THE RESTORATION PROJECT

- Low flows: Can spread out across the widened earth-bottom channel, terraced to slow down larger storm flows
- **Vegetation:** Tiers of different native vegetative communities support wildlife, provide biofiltration of urban runoff, and need almost no maintenance.

YOU CAN HELP! - WHEREVER YOU LIVE

Adjust your sprinklers to minimize runoff. Modify your landscaping to improve site absorption. Prevent erosion and protect soil with plants, mulch or permeable pavement. Reduce water demand.

The Upper Subprix Creak Relationation Project was stat and is operated by the City of Explore Regular with the cooperation of the Review Nigeral Material Residence (Section 1996) efficience real Residence Acad Review (Regular Residence Association - Funding bits this project has been provided in part by the State Costail Conservancy and in part through an appreciation feel the State Water Residence Costail Board pursuant to the Costail Materials Water Act of 2000 Proposition 19) and any amendments through to the implementation of the Costail Materials Water Act of 2000 Proposition 19) and any amendments through to the implementation of the Costail Materials Water Act of 2000 Proposition 19) and any amendments through the third professional section of the Costail Residence of the Costail Residence (Section 2016).